Add like
Add dislike
Add to saved papers

Tunable nanoelectromechanical resonator for logic computations.

Nanoscale 2017 March 10
There has been remarkable interest in nanomechanical computing elements that can potentially lead to a new era in computation due to their re-configurability, high integration density, and high switching speed. Here we present a nanomechanical device capable of dynamically performing logic operations (NOR, NOT, XNOR, XOR, and AND). The concept is based on the active tuning of the resonance frequency of a doubly-clamped nanoelectromechanical beam resonator through electro-thermal actuation. The performance of this re-configurable logic device is examined at elevated temperatures, ranging from 25 °C to 85 °C, demonstrating its resilience for most of the logic operations. The proposed device can potentially achieve switching rate in μs, switching energy in nJ, and an integration density up to 106 per cm2 . The practical realization of this re-configurable device paves the way for nano-element-based mechanical computing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app