Add like
Add dislike
Add to saved papers

Short-term particulate matter exposure induces extracellular vesicle release in overweight subjects.

BACKGROUND: Extracellular vesicles (EVs) represent a plausible molecular mechanism linking particulate matter (PM) inhalation to its systemic effects. Microvesicles (MVs) are released from many cell types in response to various stimuli. Increased body mass index (BMI) could modify the response to PM exposure due to enhanced PM uptake and/or an underlying pro-oxidative state. We investigated the relationship between EV release and PM10/PM2.5 exposure in a cohort of 51 volunteers. Subjects were stratified based on their BMI to evaluate whether overweight BMI is a determinant of hypersusceptibility to PM effects.

RESULTS: Exposure to PM10/PM2.5 was assessed with a personal sampler worn for 24hours before plasma collection and confirmed with monitoring station data. Size and cellular origin of plasma EVs were characterized by Nanosight analysis and flow cytometry, respectively. Multivariate regression models were run after log-transformation, stratifying subjects based on BMI (≥ or <25kg/m(2)). PM exposure resulted in increased release of EVs, with the maximum observed effect for endothelial MVs. For PM10 and PM2.5, the adjusted geometric mean ratio and 95% confidence interval were 3.47 (1.30, 9.27) and 3.14 (1.23, 8.02), respectively. Compared to those in normal subjects, PM-induced EV alterations in overweight subjects were more pronounced, with visibly effect in all MV subtypes, particularly endothelial MVs.

CONCLUSIONS: Our findings emphasize the role of EV release after PM exposure and the susceptibility of overweight subjects. Larger studies with accurate exposure assessment and complete EVs characterization/content analysis, could further clarify the molecular mechanism responsible for PM effects and of hypersusceptibility of overweight subjects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app