Add like
Add dislike
Add to saved papers

Effects of vasoactive drugs on crystalloid fluid kinetics in septic sheep.

PURPOSE: Crystalloid fluid and vasoactive drugs are used in the early treatment of sepsis. The purpose of the present study was to examine how these drugs alter plasma volume expansion, peripheral edema, and urinary excretion.

METHODS: Twenty-five anesthetized sheep were made septic by cecal puncture and a short infusion of lipopolysaccharide. After 50 min, a slow infusion of isotonic saline was initiated: the saline either contained no drug, norepinephrine (1 μg/kg/min), phenylephrine (3 μg/kg/min), dopamine (50 μg/kg/min), or esmolol (50 μg/kg/min). Ten min later, 20 mL/kg Ringer´s lactate solution was given over 30 min. Central hemodynamics, acid-base balance, and the urinary excretion were monitored. Frequent measurements of the blood hemoglobin concentration were used as input in a kinetic analysis, using a mixed effects modeling software.

RESULTS: The fluid kinetic analysis showed slow distribution and elimination of Ringer´s lactate, although phenylephrine and dopamine accelerated the distribution. Once distributed, the fluid remained in the peripheral tissues and did not equilibrate adequately with the plasma. Overall, stimulation of adrenergic alpha1-receptors accelerated, while beta1-receptors retarded, the distribution and elimination of fluid. A pharmacodynamic Emax model showed that Ringer´s lactate increased stroke volume by 13 ml/beat. Alpha1-receptors, but not beta1-receptors, further increased stroke volume, while both raised the mean arterial pressure. Modulation of the beta1-receptors limited the acidosis.

CONCLUSIONS: Stimulation of adrenergic alpha1-receptors with vasoactive drugs accelerated, while beta1-receptors retarded, the distribution and elimination of fluid. The tendency for peripheral accumulation of fluid was pronounced, in particular when phenylephrine was given.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app