JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Dynamic models of large-scale brain activity.

Nature Neuroscience 2017 Februrary 24
Movement, cognition and perception arise from the collective activity of neurons within cortical circuits and across large-scale systems of the brain. While the causes of single neuron spikes have been understood for decades, the processes that support collective neural behavior in large-scale cortical systems are less clear and have been at times the subject of contention. Modeling large-scale brain activity with nonlinear dynamical systems theory allows the integration of experimental data from multiple modalities into a common framework that facilitates prediction, testing and possible refutation. This work reviews the core assumptions that underlie this computational approach, the methodological framework that fosters the translation of theory into the laboratory, and the emerging body of supporting evidence. While substantial challenges remain, evidence supports the view that collective, nonlinear dynamics are central to adaptive cortical activity. Likewise, aberrant dynamic processes appear to underlie a number of brain disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app