Add like
Add dislike
Add to saved papers

Thermophoretic transport of ionic liquid droplets in carbon nanotubes.

Nanotechnology 2017 April 19
Thermal-gradient induced transport of ionic liquid (IL) and water droplets through a carbon nanotube (CNT) is investigated in this study using molecular dynamics simulations. Energetic analysis indicates that IL transport through a CNT is driven primarily by the fluid-solid interaction, while fluid-fluid interactions dominate in water-CNT systems. Droplet diffusion analysis via the moment scaling spectrum reveals sub-diffusive motion of the IL droplet, in contrast to the self-diffusive motion of the water droplet. The Soret coefficient and energetic analysis of the systems suggest that the CNT shows more affinity for interaction with IL than with the water droplet. Thermophoretic transport of IL is shown to be feasible, which can create new opportunities in nanofluidic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app