Add like
Add dislike
Add to saved papers

Formation of δ-Lactones with anti-Baeyer-Villiger Regiochemistry: Investigations into the Mechanism of the Cerium-Catalyzed Aerobic Coupling of β-Oxoesters with Enol Acetates.

The cerium-catalyzed, aerobic coupling of β-oxoesters with enol acetates and dioxygen yields δ-lactones with a 1,4-diketone moiety. In contrast to the Baeyer-Villiger oxidation (BVO), where the higher substituted residue migrates; in the case of this oxidative C-C coupling reaction, the less substituted alkyl residue undergoes a 1,2-shift. An endoperoxidic oxycarbenium ion comparable to the Criegee intermediate in the BVO is proposed as a reaction intermediate and submitted to conformational analysis by computational methods. As a result, the inverse regiochemistry is explained by a primary stereoelectronic effect. A Hammett analysis using different donor- and acceptor-substituted enol esters provides support for the oxycarbenium ion being the crucial intermediate in the rate determining step of the conversion. An overall mechanism is suggested with a radical chain reaction for the formation of endoperoxides from β-oxoesters, enol acetates and dioxygen with a cerium(IV) species as initiating reagent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app