Add like
Add dislike
Add to saved papers

Different recoveries of the first and second phases of the M-wave after intermittent maximal voluntary contractions.

PURPOSE: We investigated the recovery of muscle electrical properties after intermittent intense exercise by examining separately the first and second phases of the muscle compound action potential (M-wave).

METHODS: M-waves and mechanical twitches were obtained using femoral nerve stimulation throughout the 30-min recovery period following 48 successive intermittent 3-s MVCs. The amplitude, duration, and area of the M-wave first and second phases, and the peak twitch force were measured from the knee extensors.

RESULTS: The amplitudes of both the first and second M-wave phases were increased immediately after exercise (P < 0.05), but, whereas the first phase remained enlarged for 5 min after exercise, the increase of the second phase only lasted for 10 s. After 30 min of recovery, the amplitude, area, and duration of both the first and second phases were decreased compared to control values (10-20%, P < 0.05). A significant temporal association was found between the changes in the amplitude and duration of the M-wave first phase (maximal cross correlations, 0.9-0.93; time lag, 0 s). A significant, negative temporal relation was found between the amplitude of the M-wave first phase and the peak twitch force during recovery (P < 0.05).

CONCLUSIONS: The prolonged enlargement of the M-wave first phase during recovery seems primarily related to fatigue-induced changes in membrane properties, whereas the extremely short recovery of the second phase might be related to changes in muscle architectural features. It is concluded that muscle excitability is impaired even after intermittent fatiguing contractions which allow partial clearance of extracellular K(+).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app