Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mutation in a highly conserved glycine residue in strand 5B of plasminogen activator inhibitor 1 causes polymerisation.

Serpinopathy is characterised as abnormal accumulation of serine protease inhibitors (SERPINs) in cells and results in clinical symptoms owing to lack of SERPIN function or excessive accumulation of abnormal SERPIN. We recently identified a patient with functional deficiency of plasminogen activator inhibitor-1 (PAI-1), a member of the SERPIN superfamily. The patient exhibited life-threatening bleeding tendencies, which have also been observed in patients with a complete deficiency in PAI-1. Sequence analysis revealed a homozygous single-nucleotide substitution from guanine to cytosine at exon 9, which changed amino acid residue 397 from glycine to arginine (c.1189G>C; p.Gly397Arg). This glycine was located in strand 5B and was well conserved in other serpins. The mutant PAI-1 was polymerised in the cells, interfering with PAI-1 secretion. The corresponding mutations in SERPINC1 (anti-thrombin III) at position 456 (Gly456Arg) and SERPINI1 (neuroserpin) at position 392 (Gly392Glu) caused an anti-thrombin deficiency and severe dementia due to intracellular retention of the polymers. Glycine is the smallest amino acid, and these mutated amino acids were larger and charged. To determine which factors were important, further mutagenesis of PAI-1 was performed. Although the G397A, C, I, L, S, T, and V were secreted, the G397D, E, F, H, K, M, N, P, Q, W, and Y were not secreted. The results revealed that the size was likely triggered by the polymerisation of SEPRINs at this position. Structural analyses of this mutated PAI-1 would be useful to develop a novel PAI-1 inhibitor, which may be applicable in the context of several pathological states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app