JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fixation target representation in prefrontal cortex during the antisaccade task.

Neurons that discharge strongly during the time period of fixation of a visual target and cease to discharge before saccade initiation have been described in the brain stem, superior colliculus, and cortical areas. In subcortical structures, fixation neurons play a reciprocal role with saccadic neurons during the generation of eye movements. Their role in the dorsolateral prefrontal cortex is less obvious, and it is not known if they are activated by fixation, inhibit saccade generation, or play a role in more complex functions such as the inhibition of inappropriate responses. We examined the properties of prefrontal fixation neurons in the context of an antisaccade task, which requires an eye movement directed away from a prepotent visual stimulus. We tested monkeys with variants of the task, allowing us to dissociate activity synchronized on the fixation offset, presentation of the visual stimulus, and saccadic onset. Fixation neuron activity latency was most strongly tied to the offset of the fixation point across task variants. It was not well predicted by the appearance of the visual stimulus, which is essential for planning of the correct eye movement and inhibiting inappropriate ones. Activity of fixation neurons was generally negatively correlated with that of saccade neurons; however, critical differences in timing make it unlikely that they provide precisely timed signals for the generation of eye movements. These results demonstrate the role of fixation neurons in the prefrontal cortex during tasks requiring timing of appropriate eye movement and inhibition of inappropriate actions. NEW & NOTEWORTHY Properties of neurons that discharge during eye fixation and go silent before saccade initiation have been described in subcortical structures involved in eye movement generation, but their role in the dorsolateral prefrontal cortex presents a puzzle. Our results demonstrate the role of fixation neurons in the prefrontal cortex during tasks requiring precise timing of appropriate eye movement and inhibition of inappropriate actions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app