Add like
Add dislike
Add to saved papers

Cysteine residues in a yeast viral A/B toxin crucially control host cell killing via pH-triggered disulfide rearrangements.

K28 is a viral A/B protein toxin that intoxicates yeast and fungal cells by endocytosis and retrograde transport to the endoplasmic reticulum (ER). Although toxin translocation into the cytosol occurs on the oxidized α/β heterodimer, the precise mechanism of how the toxin crosses the ER membrane is unknown. Here we identify pH-triggered, toxin-intrinsic thiol rearrangements that crucially control toxin conformation and host cell killing. In the natural habitat and low-pH environment of toxin-secreting killer yeasts, K28 is structurally stable and biologically active as a disulfide-bonded heterodimer, whereas it forms inactive disulfide-bonded oligomers at neutral pH that are caused by activation and thiol deprotonation of β-subunit cysteines. Because such pH increase reflects the pH gradient during compartmental transport within target cells, potential K28 oligomerization in the ER lumen is prevented by protein disulfide isomerase. In addition, we show that pH-triggered thiol rearrangements in K28 can cause the release of cytotoxic α monomers, suggesting a toxin-intrinsic mechanism of disulfide bond reduction and α/β heterodimer dissociation in the cytosol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app