Add like
Add dislike
Add to saved papers

Real-time, autonomous bladder event classification and closed-loop control from single-channel pressure data.

Urinary incontinence, or the loss of bladder control, is a debilitating condition affecting millions worldwide, which significantly reduces quality of life. Neuromodulation of lower urinary tract nerves can be used to treat sensations of urgency in many subjects, including those with Spinal Cord Injury (SCI). Event driven, or conditional stimulation has been investigated as a possible improvement to the state-of-the-art open-loop stimulation systems available today. However, this requires a robust, adaptive, and noise-tolerant method of classifying bladder function from real-time bladder pressure measurements. Context-Aware Thresholding (CAT) has been previously shown to work well on prerecorded single contraction urodynamic data. In this work, for the first time, we present real-time detection of multiple serial bladder contractions using urodynamic recordings from human subjects with SCI and Neurogenic Detrusor Overactivity (NDO). CAT demonstrated a high degree of accuracy and noise tolerance on prerecorded data from 15 human subjects, with a mean accuracy of 92% and average false positive rate of 0.3 false positives per contraction. Analysis of event detection latencies showed that CAT identified and responded to events 1.4 seconds faster than the original human experimenter. Finally, we present a case study in which CAT was used live for real-time autonomous, closed-loop bladder control in a single human subject with SCI and NDO, successfully inhibiting four consecutive unwanted bladder contractions and increasing bladder capacity by 40%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app