Add like
Add dislike
Add to saved papers

Simulating the effects of growth and fiber dispersion on the electromechanical response of a cardiac ventricular wedge affected from concentric hypertrophy.

In this paper, we analyze the epicardial electromechanical response of an in silico cardiac ventricular wedge under both healthy and concentric hypertrophic conditions. This is achieved by taking into account the growth of the wedge thickness and the fiber dispersion that may follow. The electromechanical response is described in terms of some macroscopic measures, i.e. the action potential duration, the conduction velocity, the contractility and the contraction force. Our results suggest that growth reduces the action potential duration and conduction velocity, whilst it increases the contractility and contraction force, yielding an overall negative effect. In presence of fiber dispersion, the action potential duration and conduction velocity are not affected further, whilst the effect on the contractility and contraction force is enhanced.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app