Add like
Add dislike
Add to saved papers

Whole heart modeling - Spatiotemporal dynamics of electrical wave conduction and propagation.

Cardiac electrical activities are varying in both space and time. Human heart consists of a fractal network of muscle cells, Purkinje fibers, arteries and veins. Whole-heart modeling of electrical wave conduction and propagation involves a greater level of complexity. Our previous work developed a computer model of the anatomically realistic heart and simulated the electrical conduction with the use of cellular automata. However, simplistic assumptions and rules limit its ability to provide an accurate approximation of real-world dynamics on the complex heart surface, due to sensitive dependence of nonlinear dynamical systems on initial conditions. In this paper, we propose new reaction-diffusion methods and pattern recognition tools to simulate and model spatiotemporal dynamics of electrical wave conduction and propagation on the complex heart surface, which include (i) whole heart model; (ii) 2D isometric graphing of 3D heart geometry; (iii) reaction-diffusion modeling of electrical waves in 2D graph, and (iv) spatiotemporal pattern recognition. Experimental results show that the proposed numerical solution has strong potentials to model the space-time dynamics of electrical wave conduction in the whole heart, thereby achieving a better understanding of disease-altered cardiac mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app