Add like
Add dislike
Add to saved papers

A dual-axis single-proof-mass angular accelerometer for a vestibular prosthesis.

A dual-axis single-proof-mass angular accelerometer has been developed for a vestibular prosthesis. Designed to sense head rotations both in the yaw and the pitch planes, the output of the inertial sensor may be coded as amplitude or rate modulated biphasic current pulses to stimulate vestibular nerves. Fabricated with a high aspect ratio commercial process, a sensor with small form factor (1.4 mm × 0.8 mm) is achieved with a scale factor of 95.5 μV/rad/sec(2) and 145.8 μV/rad/sec(2) in the yaw and the pitch planes, respectively. Superior linear acceleration rejection was demonstrated for both rotating axis, and an overall power consumption of 296 μW was estimated including sensor and interface circuit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app