Add like
Add dislike
Add to saved papers

Identification of emotion associated brain functional network with phase locking value.

Recognition of discriminative brain functional network pattern and regions corresponding to emotions are important in understanding the neuron functional network underlying the human emotion process. Emotion models mapping onto brain is possible with the help of emotion-specific network patterns and its corresponding brain regions. This paper presents a method to identify emotion related functional connectivity pattern and their distinctive associated regions using EEG phase synchrony (phase locking value (PLV)) connectivity analysis. The emotion-specific channel pairs, reactive band, and synchrony related locations are identified based on the network dissimilarities between emotion and rest tasks. With the most reactive pairs identified, the emotion-specific functional network is formed. The proposed method is validated on `database for emotion analysis using physiological signals (DEAP)' that confirms the distinct nature of identified functional connectivity pattern and the regions corresponding to the emotion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app