Add like
Add dislike
Add to saved papers

Quantitative estimation of electro-osmosis force on charged particles inside a borosilicate resistive-pulse sensor.

Nano and micron-scale pore sensors have been widely used for biomolecular sensing application due to its sensitive, label-free and potentially cost-effective criteria. Electrophoretic and electroosmosis are major forces which play significant roles on the sensor's performance. In this work, we have developed a mathematical model based on experimental and simulation results of negatively charged particles passing through a 2μm diameter solid-state borosilicate pore under a constant applied electric field. The mathematical model has estimated the ratio of electroosmosis force to electrophoretic force on particles to be 77.5%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app