Add like
Add dislike
Add to saved papers

Sulcal curve extraction using Laplace Beltrami eigenfunction level sets.

The complexity of the human cortex is demonstrated in the intricate pattern of gyri and sulci that arise from the cortical folding process during development. Quantitative assessment of cortical folding is important in the definition of normal brain development and provides insight into neurodevelopmental disorders. In this work, a method for sulcal curve extraction is proposed that combines the advantages of previously proposed depth based and curvature based methods. The technique, derived from Laplace Beltrami eigenfunction level sets, maps mean curvature on the level sets, and incorporates depth information using extracted sulci and gyri, a characteristic previously attributed only to depth based methods. The use of Laplace Beltrami eigenfunction level sets requires neither definition of an outer hull surface nor correspondence between the cortical surface and outer hull, both of which are required by depth based methods. The utility of the method for extracting sulcal curves is demonstrated by application to fetal sheep brain MRI data, imaged at key time points during development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app