Add like
Add dislike
Add to saved papers

Estimation and modeling of EEG amplitude-temporal characteristics using a marked point process approach.

We propose a novel interpretation of single channel Electroencephalogram (EEG) traces based on the transient nature of encoded processes in the brain. In particular, the proposed framework models EEG as the output of the noisy addition of temporal, reoccurring, transient patterns known as phasic events. This is not only neurophysiologically sound, but it also provides additional information that classical EEG analysis often disregards. Furthermore, by utilizing sparse decomposition techniques, it is possible to obtain amplitude and timing that is further modeled using estimation and fitting techniques. We model Brain-Computer Interfaces (BCI) competition data features as Gaussian Mixture Model (GMM) samples in order to show the potential of working in the joint space of the parameters. The results not only preserve the topographic discriminant behavior but also expand the realm of possible EEG analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app