Add like
Add dislike
Add to saved papers

Bringing hemodynamic simulations closer to the clinics: a CFD prototype study for intracranial aneurysms.

Computational Fluid Dynamics enables the investigation of patient-specific hemodynamics for rupture predictions and treatment support of intracranial aneurysms. However, due to numerous simplifications to decrease the computations effort, clinical applicability is limited until now. To overcome this situation a clinical research software prototype was tested that can be easily operated by attending physicians. In order to evaluate the accuracy of this prototype, four patient-specific intracranial aneurysms were investigated using four different spatial resolutions. The results demonstrate that physicians were able to generate hemodynamic predictions within several minutes at low spatial resolution. However, depending on the parameter of interest and the desired accuracy, higher resolutions are required, which will lead to an increase of computational times that still look very attractive towards clinical usability. The study shows that the next step towards an applicable individualized therapy for patients harboring intracranial aneurysms can be done. However, further in vivo validations are required to guarantee realistic predictions in future studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app