Add like
Add dislike
Add to saved papers

Hemodynamic effects from coil distribution with realistic coil models in an aneurysm.

Because of its minimal invasiveness, coil embolization has become a popular way to treat aneurysms. The main problem with this method, however, is the poor understanding of the hemodynamics in the aneurysm after coil embolization. To improve this situation, we used a finite element method and computational fluid dynamics to investigate how hemodynamic parameters depend on the spatial distribution of coils. A basic model of an internal carotid artery aneurysm was created, and six realistic coil models were considered for the coil geometry. The material properties of the coils were based on the commercially available embolic coil Target 360 series. The results showed that the reduction in blood velocity in aneurysms was closely related to coil distribution. In addition, the coil volume in the neck region and the density of coils near the aneurysmal wall were further important factors for reducing the velocity. Considering the coil distribution may help to prevent aneurysmal recanalization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app