Add like
Add dislike
Add to saved papers

Real-time activity classification in a wearable system prototype for knee health assessment via joint sounds.

An algorithm for performing activity classification for a joint health assessment system using acoustical emissions from the knee is presented. The algorithm was refined based on linear acceleration data from the shank and the thigh sampled at 100 Hz/ch and collected from eight healthy subjects performing unloaded flexion-extension and sit-to-stand motions. The algorithm was implemented on a field-programmable gate array (FPGA)-based processor and has been validated in realtime on a subject performing two minutes of activities consisting of flexion-extension, sit-to-stand, and other motions while standing. When an activity is detected, the algorithm generates an enable signal for high throughput data acquisition of knee joint sounds using two airborne microphones (100 kHz/ch) and two single-axis gyroscope and accelerometer pairs (1 kHz/ch). This approach can facilitate energy-efficient recording of joint sound signatures in the context of flexion-extension and sit-to-stand activities from freely-moving subjects throughout the day, potentially providing a means of evaluating rehabilitation status, for example, following acute knee injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app