Add like
Add dislike
Add to saved papers

Self-folding hydrogel bilayer for enhanced drug loading, encapsulation, and transport.

Hydrogel-based robotic microdevices are currently investigated for minimally invasive medical procedures. Hydrogels are especially suited to targeted drug delivery applications as they are able to carry several times more drug solution than its dry weight. A major drawback of these system is that drug release takes place before reaching the targeted area in the body. We introduce a strategy based on a self-folding bilayer to prevent release during transportation without hindering the drug loading efficiency of the hydrogel. The drug is loaded into the hydrogel matrix at room temperature. When the temperature is increased to body temperature, the hydrogel-matrix collapses and the self-folded bilayer refolds into another tube. In this configuration, we observed a significant reduction in drug leakage with less than 5% drug loss during encapsulation. Finally, we demonstrate that the tube can be manipulated magnetically, which shows its potential use in targeted drug delivery applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app