Add like
Add dislike
Add to saved papers

Idle state classification using spiking activity and local field potentials in a brain computer interface.

Previous studies of intracortical brain-computer interfaces (BCIs) have often focused on or compared the use of spiking activity and local field potentials (LFPs) for decoding kinematic movement parameters. Conversely, using these signals to detect the initial intention to use a neuroprosthetic device or not has remained a relatively understudied problem. In this study, we examined the relative performance of spiking activity and LFP signals in detecting discrete state changes in attention regarding a user's desire to actively control a BCI device. Preliminary offline results suggest that the beta and high gamma frequency bands of LFP activity demonstrated a capacity for discriminating idle/active BCI control states equal to or greater than firing rate activity on the same channel. Population classifier models using either signal modality demonstrated an indistinguishably high degree of accuracy in decoding rest periods from active BCI reach periods as well as other portions of active BCI task trials. These results suggest that either signal modality may be used to reliably detect discrete state changes on a fine time scale for the purpose of gating neural prosthetic movements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app