Add like
Add dislike
Add to saved papers

A bi-directional communication paradigm between parallel NEURON and an external non-neuron process.

In order to accurately model the pattern of activation due to electrical stimulation of the hippocampus, a multi-scale computational approach is necessary. At the system level, the Admittance Method (ADM) is used to calculate the extracellular voltages created by a stimulating electrode. At the network and cellular levels, a large-scale multi-compartmental neuron network is used to calculate cellular activation. This paper presents a bi-directional communication paradigm between the NEURON model and an external surrogate for the ADM solver, where at each time step, neurons share their membrane currents with the external process, and the external process shares calculated extracellular voltages with the neuronal network. This work constitutes an important first step towards a full multi-scale NEURON-ADM model with bi-directional communication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app