Add like
Add dislike
Add to saved papers

Comprehensive reconstruction of multi-shot multi-channel diffusion data using mussels.

Echo planar imaging (EPI)-based magnetic resonance imaging (MRI) data are often corrupted by Nyquist ghost artifacts resulting from odd-even shifts of the EPI read-outs. Algorithms that corrects for the Nyquist ghost artifacts rely on calibration scans that are collected prior to the data acquisition. However, a more complex pattern of ghosting artifacts arises when diffusion-weighted data are acquired using segmented k-space EPI read-outs. The additional under-sampling present in the segmented acquisitions and the inter-shot motion during diffusion weighted acquistion cause ghosting artifacts in addition to the EPI ghosting arising from odd-even shifts. We propose a comprehensive method that can remove the Nyquist-ghosting artifacts as well as the inter-shot motion-induced ghosting artifacts in diffusion weighted images in a single step from partial Fourier data without the need for a calibration scan. We show very high quality diffusion data recovery using the proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app