Add like
Add dislike
Add to saved papers

An efficient K-NN approach for automatic drowsiness detection using single-channel EEG recording.

Drowsy driving is a major cause of many traffic accidents. The aim of this work is to develop an automatic drowsiness detection system using an efficient k-nearest neighbors (K-NN) algorithm. First, the distribution of power in time-frequency space was obtained using short-time Fourier transform (STFT) and then, the mean value of power during time-segments of 0.5 second was calculated for each EEG subband. In addition, standard deviation (SD) and Shanon entropy related to each time-segment were computed from time-domain. Finally, 52 features were extracted. Random forest algorithm was applied over the extracted data, aiming to choose the most informative subset of features. A total of 11 features were selected in order to classify drowsiness and alertness. Kd-trees was used as the nearest neighbors search algorithm so as to have a fast classifier. Our experimental results show that drowsiness can be classified efficiently with 91% accuracy using the methods and materials proposed in this paper.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app