Add like
Add dislike
Add to saved papers

Novel measure of the weigh distribution balance on the brain network: graph complexity applied to schizophrenia.

The aim of this study was to assess brain complexity dynamics in schizophrenia (SCH) patients during an auditory oddball task. For this task, we applied a novel graph measure based on the balance of the node weights distribution. Previous studies applied complexity parameters that were strongly dependent on network topology. This could bias the results, as well as making correction techniques, such as surrogating process, necessary. In the present study, we applied a novel graph complexity measure derived from the information theory: Shannon Graph Complexity (SGC). Complexity patterns from electroencephalographic recordings of 20 healthy controls and 20 SCH patients during an auditory oddball task were analyzed. Results showed a significantly more pronounced decrease of SGC for controls than for SCH patients during the cognitive task. These findings suggest an important change in the brain configuration towards a more balanced network, mainly in the connections related to long-range interactions. Since these changes are significantly more pronounced in controls, a deficit in the neural network reorganization can be associated with SCH. In addition, an accuracy of 72.5% was obtained using a receiver operating characteristic curve with a leave-one-out cross-validation procedure. The independence of network topology has been demonstrated by the novel complexity measure proposed in this study, therefore, it complements traditional graph measures as a means to characterize brain networks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app