Add like
Add dislike
Add to saved papers

Cuff-less PPG based continuous blood pressure monitoring: a smartphone based approach.

Cuff-less estimation of systolic (SBP) and diastolic (DBP) blood pressure is an efficient approach for non-invasive and continuous monitoring of an individual's vitals. Although pulse transit time (PTT) based approaches have been successful in estimating the systolic and diastolic blood pressures to a reasonable degree of accuracy, there is still scope for improvement in terms of accuracies. Moreover, PTT approach requires data from sensors placed at two different locations along with individual calibration of physiological parameters for deriving correct estimation of systolic and diastolic blood pressure (BP) and hence is not suitable for smartphone deployment. Heart Rate Variability is one of the extensively used non-invasive parameters to assess cardiovascular autonomic nervous system and is known to be associated with SBP and DBP indirectly. In this work, we propose a novel method to extract a comprehensive set of features by combining PPG signal based and Heart Rate Variability (HRV) related features using a single PPG sensor. Further, these features are fed into a DBP feedback based combinatorial neural network model to arrive at a common weighted average output of DBP and subsequently SBP. Our results show that using this current approach, an accuracy of ±6.8 mmHg for SBP and ±4.7 mmHg for DBP is achievable on 1,750,000 pulses extracted from a public database (comprising 3000 people). Since most of the smartphones are now equipped with PPG sensor, a mobile based cuff-less BP estimation will enable the user to monitor their BP as a vital parameter on demand. This will open new avenues towards development of pervasive and continuous BP monitoring systems leading to an early detection and prevention of cardiovascular diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app