Add like
Add dislike
Add to saved papers

Probing the micromechanics of the fastest growing plant cell - the pollen tube.

The pollen tube is a fast growing cellular protrusion that plays a key role in the reproductive process of flowering plants. It serves as an important model for studying cellular morphogenesis, anisotropic growth mechanisms, and cellular signaling in the plant sciences. The anisotropic growth of pollen tubes is driven by a finely tuned control of the intracellular turgor pressure and the extensibility of the cell wall. To decipher this internal feedback loop and mathematically model the growth process, a quantitative understanding of the mechanical properties of the cell wall is crucial, in addition to biochemical investigations. We report an integrated microfluidic-MEMS force sensor system that allows for high-throughput optical and mechanical investigations of pollen tubes. The system permits large-scale germination, growth, and optical phenotyping of pollen tubes empowering rapid micro-indentation measurements on these cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app