Add like
Add dislike
Add to saved papers

Embedded clutter reduction and face detection algorithms for a visual prosthesis.

Retinal prosthetic devices can significantly and positively impact the ability of visually challenged individuals to live a more independent life. We describe a visual processing system which leverages image analysis techniques to produce visual patterns and allows the user to more effectively perceive their environment. These patterns are used to stimulate a retinal prosthesis to allow self guidance and a higher degree of autonomy for the affected individual. Specifically, we describe an image processing pipeline that allows for object and face localization in cluttered environments as well as various contrast enhancement strategies in the "implanted image." Finally, we describe a real-time implementation and deployment of this system on the Argus II platform. We believe that these advances can significantly improve the effectiveness of the next generation of retinal prostheses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app