Add like
Add dislike
Add to saved papers

Continuous theta burst transcranial magnetic stimulation affects brain functional connectivity.

Prefrontal cortex (PFC) plays an important role in the emotional processing as well as in the functional brain network. Hyperactivity in the right dorsolateral prefrontal cortex (DLPFC) would be found in anxious participants. However, it is still unclear what the role of PFC played in a resting functional network. Continuous theta burst transcranial magnetic stimulation (cTBS) is an effective tool to create virtual lesions on brain regions. In this paper, we applied cTBS over right prefrontal area, and investigated the effects of cTBS on the brain activity for functional connectivity by the method of graph theory. We recorded 64-channels EEG on thirteen healthy participants in the resting condition and emotional tasks before and after 40 s of cTBS. This work focused on the effect of cTBS on cortical activities in the resting condition by calculating the coherence between EEG channels and building functional networks before and after cTBS in the delta, theta, alpha and beta bands. Results revealed that 1) The functional connectivity after cTBS was significantly increased compared with that before cTBS in delta, theta, alpha and beta bands in the resting condition; 2) The efficiency-cost reached the maximum before and after cTBS both with the cost about 0.3 in the bands above, which meant that the information transmission of functional brain network with this cost was highly efficient; 3) the clustering coefficient and path length after cTBS was significantly increased in delta, theta and beta bands. In conclusion, cTBS over PFC indeed enhanced the functional connectivity in the resting condition. In addition, the information transmission in the resting brain network was highly efficient with the cost about 0.3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app