Add like
Add dislike
Add to saved papers

Non-invasive imaging of ventricular activation during pacing and arrhythmia: methods and validation.

Cardiovascular disease continued to be a leading killer world widely. Each year, about 400,000 cases of sudden cardiac arrest are reported in the U.S. alone. Clinically, radio-frequency ablative procedure has become widely applied in the treatment of ventricular arrhythmia. Non-invasive approaches have been demonstrated to be able to provide important information on the arrhythmogenesis and potentially assist in the clinical practice. In this work, we develop and validate a novel temporal sparse based imaging method, Cardiac Electrical Sparse Imaging (CESI). Computer simulation and animal validation results demonstrate that the CESI approach is capable of imaging with improved accuracy and robustness by exploiting the temporal sparse property underlying cellular electrophysiology. Overall, a CC of 0.8, RE of 0.2 and LE (localization error) of 7 mm has been achieved on human realistic simulation and good accuracy has been observed in canine simultaneous mapping studies. Also, the technique maintains full temporal resolution (RRE <; 0.04) in terms of the activation sequence under various disturbances and in various pathologies such as premature ventricular complex and ventricular tachycardia. Our promising results indicate the excellent performance of noninvasive imaging of cardiac activation under various arrhythmias, and its potential for aiding clinical management of lethal ventricular arrhythmia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app