Add like
Add dislike
Add to saved papers

Graph fractional-order total variation EEG source reconstruction.

EEG source imaging is able to reconstruct sources in the brain from scalp measurements with high temporal resolution. Due to the limited number of sensors, it is very challenging to locate the source accurately with high spatial resolution. Recently, several total variation (TV) based methods have been proposed to explore sparsity of the source spatial gradients, which is based on the assumption that the source is constant at each subregion. However, since the sources have more complex structures in practice, these methods have difficulty in recovering the current density variation and locating source peaks. To overcome this limitation, we propose a graph Fractional-Order Total Variation (gFOTV) based method, which provides the freedom to choose the smoothness order by imposing sparsity of the spatial fractional derivatives so that it locates source peaks accurately. The performance of gFOTV and various state-of-the-art methods is compared using a large amount of simulations and evaluated with several quantitative criteria. The results demonstrate the superior performance of gFOTV not only in spatial resolution but also in localization accuracy and total reconstruction accuracy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app