Add like
Add dislike
Add to saved papers

Reward gain model describes cortical use-dependent plasticity.

Consistent repetitions of an action lead to plastic change in the motor cortex and cause shift in the direction of future movements. This process is known as use-dependent plasticity (UDP), one of the basic forms of the motor memory. We have recently demonstrated in a physiological study that success-related reinforcement signals could modulate the strength of UDP. We tested this idea by developing a computational approach that modeled the shift in the direction of future action as a change in preferred direction of population activity of neurons in the primary motor cortex. The rate of the change follows a modified temporal difference reinforcement learning algorithm, in which the learning policy is based on comparison between what reward the population experiences on a particular trial, and what it had expected on the basis of its previous learning. By using this model, we were able to characterize the nature of learning and retention of UDP. Exploring the relationship between reinforcement and UDP constitutes a crucial step toward understanding the basic blocks involved in the formation of motor memories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app