Add like
Add dislike
Add to saved papers

Roles of steady-state and dynamic models for regulation of hydrophobic chemicals in aquatic systems: A case study of decamethylcyclopentasiloxane (D5) and PCB-180 in three diverse ecosystems.

Chemosphere 2017 May
We seek to contribute to the improved regulatory use of mass balance models to complement environmental monitoring data by applying the steady-state Quantitative Water Air Sediment Interactive model (QWASI) and a novel unsteady-state QWASI model. A steady-state model can yield not only a useful simulation of chemical fate under near steady-state conditions, but it can provide insights into the likely influences of increasing or decreasing emission rates, temperature changes, and unexpectedly high sensitivities to model parameters that may require additional investigation. We compared the consistency of insights from both types of model, in the expectation that while the dynamic model provides a closer simulation of actual conditions, for many purposes a simple, less computationally demanding, more transparent and less expensive model may be adequate for many regulatory purposes. We investigated the response times of decamethylcyclopentasiloxane (D5) and PCB-180 concentrations in water and sediment under three emission scenarios in three different aquatic systems, namely Lake Ontario, Oslofjord, and Lake Pepin. D5 was predicted to be removed largely by hydrolysis and volatilization in Lake Ontario and Oslofjord whereas it is subject to removal by advective loss in Lake Pepin. The half-times of D5 water concentration to a stepwise reduction in emission were <60 days in all three water bodies. In contrast, the predicted half-times were 0.53, 1.4, and 2.9 years in Lake Pepin, Oslofjord, and Lake Ontario, respectively. We also explored how uncertainties in input parameters propagate into uncertainties of concentrations in water and sediments possibly necessitating more accurate values.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app