Add like
Add dislike
Add to saved papers

Balancing selection maintains sex determining alleles in multiple-locus complementary sex determination.

Hymenopteran species in which sex is determined through a haplo-diploid mechanism known as complementary sex determination (CSD) are vulnerable to a unique form of inbreeding depression. Diploids heterozygous at one or more CSD loci develop into females but diploids homozygous at all loci develop into diploid males, which are generally sterile or inviable. Species with multiple polymorphic CSD loci (ml-CSD) may have lower rates of diploid male production than species with a single CSD locus (sl-CSD), but it is not clear if polymorphism is consistently maintained at all loci. Here, we assess the rate of diploid male production in a population of Cotesia rubecula, a two-locus CSD parasitoid wasp species, approximately 20 years after the population was introduced for biological control. We show that diploid male production dropped from 8-13% in 2005 and 2006 to 3-4% by 2015. We also show from experimental crosses that the population maintained polymorphism at both CSD loci in 2015. We use theory and simulations to show that balancing selection on all CSD alleles promotes polymorphism at several loci in ml-CSD populations. Our study supports the hypothesis that ml-CSD populations have lower diploid male production and are more likely to persist than comparable sl-CSD populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app