Add like
Add dislike
Add to saved papers

Polyaniline-Stabilized Intertwined Network-like Ferrocene/Graphene Nanoarchitecture for Supercapacitor Application.

The present work highlights the effective H-π interaction between metallocenes (ferrocene; Fc) and graphene and their stabilization in the presence of polyaniline (PANI) through π-π interactions. The PANI-stabilized Fc@graphene nanocomposite (FcGA) resembled an intertwined network-like morphology with high surface area and porosity, which could make it a potential candidate for energy-storage applications. The relative interactions between the components were assessed through theoretical (DFT) calculations. The specific capacitance calculated from galvanostatic charging/discharging indicated that the PANI-stabilized ternary nanocomposite exhibited a maximum specific capacitance of 960 F g- at an energy density of 85 Wh Kg-1 and a current density of 1 A g- . Furthermore, electrochemical impedance spectroscopy (EIS) analysis confirmed the low internal resistance of the as-prepared nanocomposites, which showed improved charge-transfer properties of graphene after incorporation of Fc and stabilization with PANI. Additionally, all electrodes were found to be stable up to 5000 cycles with a specific capacitance retention of 86 %, thus demonstrating the good reversibility and durability of the electrode material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app