JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Episodic release of CO 2 from the high-latitude North Atlantic Ocean during the last 135 kyr.

Nature Communications 2017 Februrary 23
Antarctic ice cores document glacial-interglacial and millennial-scale variability in atmospheric pCO2 over the past 800 kyr. The ocean, as the largest active carbon reservoir on this timescale, is thought to have played a dominant role in these pCO2 fluctuations, but it remains unclear how and where in the ocean CO2 was stored during glaciations and released during (de)glacial millennial-scale climate events. The evolution of surface ocean pCO2 in key locations can therefore provide important clues for understanding the ocean's role in Pleistocene carbon cycling. Here we present a 135-kyr record of shallow subsurface pCO2 and nutrient levels from the Norwegian Sea, an area of intense CO2 uptake from the atmosphere today. Our results suggest that the Norwegian Sea probably acted as a CO2 source towards the end of Heinrich stadials HS1, HS4 and HS11, and may have contributed to the increase in atmospheric pCO2 at these times.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app