Add like
Add dislike
Add to saved papers

Biofabrication of bundles of poly(lactic acid)-collagen blends mimicking the fascicles of the human Achille tendon.

Biofabrication 2017 March 9
Electrospinning is a promising technique for the production of scaffolds aimed at the regeneration of soft tissues. The aim of this work was to develop electrospun bundles mimicking the architecture and mechanical properties of the fascicles of the human Achille tendon. Two different blends of poly(L-lactic acid) (PLLA) and collagen (Coll) were tested, PLLA/Coll-75/25 and PLLA/Coll-50/50, and compared with bundles of pure PLLA. First, a complete physico-chemical characterization was performed on non-woven mats made of randomly arranged fibers. The presence of collagen in the fibers was assessed by thermogravimetric analysis, differential scanning calorimetry and water contact angle measurements. The collagen release in phosphate buffer solution (PBS) was evaluated for 14 days: results showed that collagen loss was about 50% for PLLA/Coll-75/25 and 70% for PLLA/Coll-50/50. In the bundles, the individual fibers had a diameter of 0.48 ± 0.14 μm (PLLA), 0.31 ± 0.09 μm (PLLA/Coll-75/25), 0.33 ± 0.08 μm (PLLA/Coll-50/50), whereas bundle diameter was in the range 300-500 μm for all samples. Monotonic tensile tests were performed to measure the mechanical properties of PLLA bundles (as-spun) and of PLLA/Coll-75/25 and PLLA/Coll-50/50 bundles (as-spun, and after 48 h, 7 days and 14 days in PBS). The most promising material was the PLLA/Coll-75/25 blend with a Young modulus of 98.6 ± 12.4 MPa (as-spun) and 205.1 ± 73.0 MPa (after 14 days in PBS). Its failure stress was 14.2 ± 0.7 MPa (as-spun) and 6.8 ± 0.6 MPa (after 14 days in PBS). Pure PLLA withstood slightly lower stress than the PLLA/Coll-75/25 while PLLA/Coll-50/50 had a brittle behavior. Human-derived tenocytes were used for cellular tests. A good cell adhesion and viability after 14 day culture was observed. This study has therefore demonstrated the feasibility of fabricating electrospun bundles with multiscale structure and mechanical properties similar to the human tendon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app