Add like
Add dislike
Add to saved papers

Non-covalently crosslinked chitosan nanofibrous mats prepared by electrospinning as substrates for soft tissue regeneration.

Carbohydrate Polymers 2017 April 16
Chitosan (CS) membranes obtained by electrospinning are potentially ideal substrates for soft tissue engineering as they combine the excellent biological properties of CS with the extracellular matrix (ECM)-like structure of nanofibrous mats. However, the high amount of acid solvents required to spun CS solutions interferes with the biocompatibility of CS fibres. To overcome this limitation, novel CS based solutions were investigated in this work. Low amount of acidic acid (0.5M) was used and dibasic sodium phosphate (DSP) was introduced as ionic crosslinker to improve nanofibres water stability and to neutralize the acidic pH of electrospun membranes after fibres soaking in biological fluids. Randomly oriented and aligned nanofibres (128±19nm and 140±41nm, respectively) were obtained through electrospinning process (voltage of 30kV, 30μL/min flow rate and temperature of 39°C) showing mechanical properties similar to those of soft tissues (Young Modulus lower than 40MPa in dry condition) and water stability until 7 days. C2C12 myoblast cell line was cultured on CS fibres showing that the aligned architecture of substrate induces cell orientation that can enhance skeletal muscle regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app