Add like
Add dislike
Add to saved papers

Patterned Polymer Coatings Increase the Efficiency of Dew Harvesting.

Micropatterned polymer surfaces, possessing both topographical and chemical characteristics, were prepared on three-dimensional copper tubes and used to capture atmospheric water. The micropatterns mimic the structure on the back of a desert beetle that condenses water from the air in a very dry environment. The patterned coatings were prepared by the dewetting of thin films of poly-4-vinylpyridine (P4VP) on top of polystyrene films (PS) films, upon solvent annealing, and consist of raised hydrophilic bumps on a hydrophobic background. The size and density distribution of the hydrophilic bumps could be tuned widely by adjusting the initial thickness of the P4VP films: the diameter of the produced bumps and their height could be varied by almost 2 orders of magnitude (1-80 μm and 40-9000 nm, respectively), and their distribution density could be varied by 5 orders of magnitude. Under low subcooling conditions (3 °C), the highest rate of water condensation was measured on the largest (80 μm diameter) hydrophilic bumps and was found to be 57% higher than that on flat hydrophobic films. These subcooling conditions are achieved spontaneously in dew formation, by passive radiative cooling of a surface exposed to the night sky. In effect, the pattern would result in a larger number of dewy nights than a flat hydrophobic surface and therefore increases water capture efficiency. Our approach is suited to fabrication on a large scale, to enable the use of the patterned coatings for water collection with no external input of energy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app