JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activity of Sanguinarine against Candida albicans Biofilms.

Candida albicans biofilms show resistance to many clinical antifungal agents and play a considerable contributing role in the process of C. albicans infections. New antifungal agents against C. albicans biofilms are sorely needed. The aim of this study was to evaluate sanguinarine (SAN) for its activity against Candida albicans biofilms and explore the underlying mechanism. The MIC50 of SAN was 3.2 μg/ml, while ≥0.8 μg/ml of SAN could suppress C. albicans biofilms. Further study revealed that ≥0.8 μg/ml of SAN could decrease cellular surface hydrophobicity (CSH) and inhibited hypha formation. Real-time reverse transcription-PCR (RT-PCR) results indicated that the exposure of C. albicans to SAN suppressed the expression of some adhesion- and hypha-specific/essential genes related to the cyclic AMP (cAMP) pathway, including ALS3 , HWP1 , ECE1 , HGC1 , and CYR1 Consistently, the endogenous cAMP level of C. albicans was downregulated after SAN treatment, and the addition of cAMP rescued the SAN-induced filamentation defect. In addition, SAN showed relatively low toxicity to human umbilical vein endothelial cells, the 50% inhibitory concentration (IC50 ) being 7.8 μg/ml. Collectively, the results show that SAN exhibits strong activity against C. albicans biofilms, and the activity was associated with its inhibitory effect on adhesion and hypha formation due to cAMP pathway suppression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app