Journal Article
Review
Add like
Add dislike
Add to saved papers

Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus.

Transient receptor potential canonical type 3 channels (TRPC3) are expressed in neural, cardiac, respiratory and vascular tissues, with both similarities and differences between human and animal models for the same cell types. In common with all members of the six subfamilies of TRP channels, TRPC3 are non-voltage gated, non-selective cation channels that are mainly permeated by Ca2+ , and have distinct molecular, biophysical, anatomical and functional properties. TRP channels are present in excitable and non-excitable cells where they sense and respond to a wide variety of physical and chemical stimuli. TRPC3 are expressed in the endothelium and/or smooth muscle of specific intact arteries, such as mesenteric, cerebral and myometrial, where they are critical for the control of vascular tone, and show altered activity in development and disease. In artery endothelium, TRPC3 contributes to endothelium-derived hyperpolarization and nitric oxide-mediated vasodilation. In artery smooth muscle, TRPC3 contributes to constrictor mechanisms. In both endothelium and smooth muscle, TRPC3 contributes to function via caveolae-caveolin dependent and independent mechanisms. In different cell types and states, like other TRP channels, TRPC3 can form complexes with other TRP proteins and associated channels and accessory proteins, including those associated with endo(sarco)plasmic reticulum (ER/SR), thereby facilitating Ca2+ channel activation and/or refilling ER/SR Ca2+ stores. The diversity of TRPC3 interactions with other vascular signaling components is a potential target for artery specific control mechanisms. This brief perspective highlights recent advances in understanding the functional diversity of TRPC3, with an emphasis on vascular health and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app