Add like
Add dislike
Add to saved papers

Cell stress response to two different types of polymer coated cobalt ferrite nanoparticles.

Toxicology Letters 2017 March 16
Potential nanoparticle (NP) toxicity is one of crucial problems that limit the applicability of NPs. When designing NPs for biomedical and biotechnological applications it is thus important to understand the mechanisms of their toxicity. In this study, we analysed the stress responses of previously designed polyacrylic acid (PAA) and polyethylenimine (PEI) coated NPs on primary human myoblasts (MYO) and B16 mouse melanoma cell line. Negatively charged PAA did not induce cell toxicity, reactive oxygen species (ROS) or activate the transcription factor NF-κB in either cell line even at high concentrations (100μg/ml). On the other hand, positively charged PEI NPs induced a concentration dependent necrotic cell death and an increase in ROS following 24h incubation already at low concentrations (>4μg/ml). Moreover, PEI NPs induced NF-κB activation 15-30min after incubation in MYO cells, most probably through activation of TLR4 receptor. Interestingly, there was no NF-κB response to PEI NPs in B16 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app