Add like
Add dislike
Add to saved papers

Spinosad induces autophagy of Spodoptera frugiperda Sf9 cells and the activation of AMPK/mTOR signaling pathway.

Spinosad, a high-selectivity neural toxin, has been widely used in agricultural production. However, the mode of action of spinosad on insect non-neural cells is not yet clear and hence requires further investigation. Therefore, to reveal the cytotoxic mechanisms of spinosad, we investigated whether and how it can induce autophagic cell death. After treating Sf9 cells with spinosad, the resulting autophagosome was observed by transmission electron microscopy and monodansylcadaverine staining. Interestingly, spinosad induced the accumulation of Beclin-1, degradation of p62, and intensification of LC3-B formation and translocation and thus autophagy, whereas, 3-MA treatment reverted the phenotype. Under ATP depletion conditions, spinosad induced autophagy of Sf9 cells and activation of the AMPK/mTOR signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app