Add like
Add dislike
Add to saved papers

Hormonally Mediated Increases in Sex-Biased Gene Expression Accompany the Breakdown of Between-Sex Genetic Correlations in a Sexually Dimorphic Lizard.

The evolution of sexual dimorphism is predicted to occur through reductions in between-sex genetic correlations (rmf ) for shared traits, but the physiological and genetic mechanisms that facilitate these reductions remain largely speculative. Here, we use a paternal half-sibling breeding design in captive brown anole lizards (Anolis sagrei) to show that the development of sexual size dimorphism is mirrored by the ontogenetic breakdown of rmf for body size and growth rate. Using transcriptome data from the liver (which integrates growth and metabolism), we show that sex-biased gene expression also increases dramatically between ontogenetic stages bracketing this breakdown of rmf . Ontogenetic increases in sex-biased expression are particularly evident for genes involved in growth, metabolism, and cell proliferation, suggesting that they contribute to both the development of sexual dimorphism and the breakdown of rmf . Mechanistically, we show that treatment of females with testosterone stimulates the expression of male-biased genes while inhibiting the expression of female-biased genes, thereby inducing male-like phenotypes at both organismal and transcriptomic levels. Collectively, our results suggest that sex-specific modifiers such as testosterone can orchestrate sex-biased gene expression to facilitate the phenotypic development of sexual dimorphism while simultaneously reducing genetic correlations that would otherwise constrain the independent evolution of the sexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app