Add like
Add dislike
Add to saved papers

Highly Efficient and Thermally Stable K 3 AlF 6 :Mn 4+ as a Red Phosphor for Ultra-High-Performance Warm White Light-Emitting Diodes.

Following pioneering work, solution-processable Mn4+ -activated fluoride pigments, such as A2 BF6 (A = Na, K, Rb, Cs; A2 = Ba, Zn; B = Si, Ge, Ti, Zr, Sn), have attracted considerable attention as highly promising red phosphors for warm white light-emitting diodes (W-LEDs). To date, these fluoride pigments have been synthesized via traditional chemical routes with HF solution. However, in addition to the possible dangers of hypertoxic HF, the uncontrolled precipitation of fluorides and the extensive processing steps produce large morphological variations, resulting in a wide variation in the LED performance of the resulting devices, which hampers their prospects for practical applications. Here, we demonstrate a prototype W-LED with K3 AlF6 :Mn4+ as the red light component via an efficient and water-processable cation-exchange green route. The prototype already shows an efficient luminous efficacy (LE) beyond 190 lm/W, along with an excellent color rendering index (Ra = 84) and a lower correlated color temperature (CCT = 3665 K). We find that the Mn4+ ions at the distorted octahedral sites in K3 AlF6 :Mn4+ can produce a high photoluminescence thermal and color stability, and higher quantum efficiency (QE) (internal QE (IQE) of 88% and external QE (EQE) of 50.6%.) that are in turn responsible for the realization of a high LE by the warm W-LEDs. Our findings indicate that the water-processed K3 AlF6 may be a highly suitable candidate for fabricating high-performance warm W-LEDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app