Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

Deconstructed Analogues of Bupropion Reveal Structural Requirements for Transporter Inhibition versus Substrate-Induced Neurotransmitter Release.

Bupropion (1), an α-aminophenone uptake inhibitor at plasma membrane transporters for dopamine (DAT) and norepinephrine (NET), is a widely prescribed antidepressant and smoking cessation aid. Cathinone (2), a structurally simpler α-aminophenone, is a substrate-type releasing agent at the same transporters and a recognized drug of abuse. Our goal was to identify the structural features of α-aminophenones that govern the mechanistic transition from uptake inhibition to substrate-induced release. Deconstructed analogues of 1 were synthesized and compared for their ability to interact with DAT, NET, and the serotonin transporter (SERT) using in vitro assay methods. Bulky amine substituents resulted in compounds that function as DAT uptake inhibitors but not release agents, whereas smaller amine substituents result in relatively nonselective releasing agents at DAT and NET. Our findings add to empirical evidence supporting distinct molecular determinants for α-aminophenone- (i.e., cathinone-) related agents acting as transporter inhibitors versus those acting as releasers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app