Add like
Add dislike
Add to saved papers

Binding of hydroxylated polybrominated diphenyl ethers with human serum albumin: Spectroscopic characterization and molecular modeling.

Three hydroxylated polybrominated diphenyl ethers (OH-PBDEs), 3-OH-BDE-47, 5-OH-BDE-47, and 6-OH-BDE-47, were selected to investigate the interactions between OH-PBDEs with human serum albumin (HSA) under physiological conditions. The observed fluorescence quenching can be attributed to the formation of complexes between HSA and OH-PBDEs. The thermodynamic parameters at different temperatures indicate that the binding was caused by hydrophobic forces and hydrogen bonds. Molecular modeling and three-dimensional fluorescence spectrum showed conformational and microenvironmental changes in HSA. Circular dichroism analysis showed that the addition of OH-PBDEs changed the conformation of HSA with a minor reduction in α-helix content and increase in β-sheet content. Furthermore, binding distance r between the donor (HSA) and acceptor (three OH-PBDEs) calculated using Förster's nonradiative energy transfer theory was <7 nm; therefore, the quenching mechanisms for the binding between HSA and OH-PBDEs involve static quenching and energy transfer. Combined with molecular dynamics simulations, the binding free energies (ΔGbind ) were calculated using molecular mechanics/Poisson - Boltzmann surface area method, and the crucial residues in HSA were identified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app