JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Anandamide oxidative metabolism-induced endoplasmic reticulum stress and apoptosis.

The Endocannabinoid System (ECS) has been recognized as a crucial player in human reproduction. Changes in the levels of anandamide (AEA), the main endocannabinoid (eCB), negatively affect reproductive events, such as implantation, decidualization and placentation. Cyclooxygenase-2 (COX-2) is a major enzyme expressed in the endometrium and its involvement in female reproductive system has evolved over the last few years. Currently, COX-2 oxidative metabolism is emerging as a key mediator of AEA-induced actions. In this study, we aimed to disclose the mechanisms underlying the effects of AEA in human endometrial stromal cell fate, using a human-derived endometrial cell line (St-T1b). We found that AEA has an anti-proliferative activity through a direct effect on cell cycle progression by inducing G2 /M arrest. Moreover, high levels of AEA increased COX-2 activity, triggering apoptotic cell death, with loss of mitochondrial membrane potential, induction of caspase -9 and -3/-7 activities, and cleavage of poly (ADP-ribose) polymerase (PARP). In addition, the involvement of intracellular reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress was verified. These effects were prevented by pre-incubation with a selective COX-2 inhibitor. Therefore, we hypothesize that, in response to altered levels of this eCB, COX-2 oxidative metabolism of AEA may deregulate endometrial cell turnover and, consequently, interfere with cellular events crucial for implantation and decidualization, with a negative impact on human fertility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app